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I n t r o d u c t i o n  

Let p be a prime number and G a pro-p group that contains an open free p r o p  

subgroup F.  If G is torsion free, then by the celebrated theorem of Serre [$1], 

G is also a free p r o p  group. However, if G has torsion, the structure of G is not 

clear even in the case [G : F] = p. 

The situation for abstract groups is much better. In addition to the abstract 

version of Serre's theorem due to Serre, Stallings and Swan, the following two 

theorems describe the structure of virtually free groups: 

THEOREM (A. Karrass, A. Pietrowski and D. Solitar [K-P-S]): Let G be a finitely 

generated virtually free group. Then G is the fundamental group of a finite graph 

of finite groups. 

THEOREM (J. L. Dyer and G. P. Scott [D-S]): Let G be a group having a free 

subgroup of index p. Then G = ( *iei( Cp x Hi)) * H, where Hi, H are free groups. 

On this basis (as well as on the basis of the results below) one can state the 

following conjectures: 

CONJECTURE 1: Let G be a finitely generated virtually free prop group. Then G 

is the fundamental group of a finite graph of finite p-groups in the category of pro- 

p groups (i.e. isomorphic to the prop completion of some abstract fundamental 

group of a finite graph of finite p~groups). 

CONJECTURE 9.: Let G be a finitely generated prop group having a free prop  

subgroup of index p. Then G is a free prop product 

n 

• II ' ,  

where Hi, H are free pro-p groups of finite ranks. 

In this paper we establish the following results. 

THEOREM 1: Conjectures 1 and 2 are true i f  G is a finite extension of a free 

prop  group F of rank < 3. 

If rank(F)  = 1, the easy proof, which relies on the well known structure of 

Aut(Zv) , is given in Lemma 3.7. If rank(F) = 2, the first step of the proof is to 

make the reduction to the case when G has trivial center. After this one needs 

to describe all finite extensions of F having trivial center, which is done in the 

following 
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THEOREM 2: Let G be a pro-p group with trivial center. Then G has an open 

normal free subgroup F of rank 2 if and only if G has one of the following 

structures: 

(1) G is a free pro-p group of finite rank. 

(2) p ---- 3 and G -~ C3 L[ c3. 

(3) p = 2 and G has one of the following forms: 

(a) G ~ C2 LI C2 LI C2, 

(b) a ~ C2 LI z2; 
(c) a c2 I1(C  x z2); 
(d) G u C4 LI C:; 
(e) v (c2 x c2) kI 62; 
(f) a  (C2 x C2) Iic,(C2 x C2) lIc,(c2 x c2); 
(g) G ~-D4 I_Ic2 (C2 x C2) where Da is the dihedral group of order 8. 

Here, C ,  denotes the finite cyclic group of order n and Z2 is the group of 

2-adic integers. All free products (with amalgamations) in Theorem 2 are in the 

category of pro-p groups which (in our situation) can be defined as the pro-p 

completions of the corresponding abstract constructions. For precise definitions, 

see e.g. [B-N-W], JR2] and [G-R]. 

COROLLARY: Let c~ be an automorphism of order p'~ of a free pro-p group F of 

rank 2. Then there exists an a-invaxiant abstract dense free subgroup of rank 2 

in F. 

It is known that  the automorphism group Aut(F2) of a free pro-p group of 

rank 2 is much more complicated than the automorphism group Aut((I)2) of the 

abstract free group 02 of rank 2. Athough Aut(r is embedded in Aut(F2) it 
is by no means dense there. In fact, V. Romankov fro] proved recently that  

Aut(Fn), n > 1, is (topologically) infinitely generated! Nevertheless Theorem 2 

allows us to deduce that  there are only a few conjugacy classes of torsion elements 

in Aut(F2). They axe described in the following 

THEOREM 3: Let p denote a prime. Let S denote the set of possible orders of 

torsion elements of Aut(F2), where F2 is the free prop group of rank 2. 

The conjugacy c/asses of dements of finite order coprime to p in Aut(F2) axe 

in a natural one-to-one correspondence to the conjugacy classes of elements of 

order coprime to p in GL2 (p). 

Let c(n) denote the number of conjugacy classes of automorphisms of order n. 

(i) For s E S with s coprime to p one has that s divides p2 _ 1. Furthermore 

c(s) = r if s divides p - 1 ,  and c(s) = r i f s  does not divide p - 1 .  
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Here r denotes the Euler function. 

(ii) I f p  = 2, then S = (2, 3, 4}. One has c(2) = 4, c(3) -- 1, c(4) = 1. 

(iii) I f p  = 3, then S = {2,3,4,8}. One hasc(2)  -- 2, c(3) = 1, c(4) = 1, 

c (8 )  = 2. 

(iv) I f  p > 3, then s E S is coprime to p. 

The proofs of all corresponding results for abstract groups (including the 

abstract analog of Serre's theorem) use a very poweful instrument, namely the 

theory of ends. There is nothing similar to a theory of ends in the context of a 

pro-p groups. The proofs in the present paper are based on the combinatorial 

methods in the category of p r o p  groups. 

2. P r e l i m i n a r i e s  

In addition to the above, we list here the notation and conventions that  we use. 

Throughout  the paper p denotes a prime number. In general, the groups in 

this paper are p r o p  groups; whenever we deal with abstract groups we shall 

mention it explicitly. Subgroups of a p r o p  group are assumed to be closed, and 

homomorphisms of p r o p  groups are supposed to be continuous. If G is a p r o p  

group, we denote by G p (the closure of) its commutator subgroup, and by G* 

its Frattini subgroup, i.e., G* = GPG ~. We use H _< G (respectively, H _<o G, 

H < G, H ~ G, etc.) to indicate that  H is a subgroup (respectively, an open 

subgroup, a proper subgroup, a normal subgroup, etc.) of G. If x, y E G, then 

x y = y - i x y  and [x, y] = x - l y - l x y ,  as usual. For X, Y _< G, [X, Y] denotes the 

subgroup of G generated by all commutators Ix, y] (x E X, y E Y). If H _< G, 

then C(H), CG(H) and JV'c(H) denote the center of H,  the centralizer of H in 

G and the normalizer of H in G, respectively. For sets X and Y, we let X - Y 

denote the difference set. 

LEMMA 2.1: For a p rop  group H let Tor(H) denote the subgroup generated by 

the torsion dements  of H. Let p be a prime number, G a p ro p  group and H an 

open subgroup of G. 

(i) I f  Tor(C(H)) is a nontrivial finite group, then Tor(C(G)) is also finite and 

nontrivial. 

(ii) I f  C(H) is finite nontrivial, so is C(G). 

Proof: (i) Suppose that  this is not the case, and let H <o G be a counter 

example to our statement such that the index [G : H] is minimal. If [G : H] ~ p, 

choose K to be an open subgroup of G containing H with [G : K] = p. Since 

[K : H] < [G : H], we have that Tor(C(K)) is finite and nontrivial, by the 
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minimality of [G : H]. Similarly, since [G : K] < [G : H], one concludes that  

Tor(C(G)) is finite and nontrivial. This contradiction implies that  in our minimal 

counterexample we must have [G : HI -- p. Hence H is a normal subgroup of 

G; this is a consequence of the corresponding property for finite p-groups (cf. 

Theorem 4.3.2 of [H]), since G/Ha is a finite p-group and H c  _< H < G, where 

Ha = [~gea g- lHg is the core of H in G. 

Note that  Tor(C(H)) is normal in G. Consider the natural homomorphism 

~o: G > Aut(Wor(C(H))) 

induced by conjugation, and denote its image by Go. Then Go is finite and it 

acts on Tor(C(H)) as follows: if g E G and z E Tor(C(H)), then z ~'(g) = g-lzg. 

Consider the corresponding semidirect product F0 = Tor(C(H)) n Go. Since F0 

is a finite p-group and 1 7 ~ Tor(C(H)) % F0, we deduce that  

Tor(C(H)) M C(Fo) • 1 

(cf. [HI, Theorems 4.3.1 and 4.3.4). Hence there exists some 1 7~ z E Tor(C(H)) 

such that  for every 9 E G, z ~'(9) = g-lzg = z; thus z E Tor(C(G)), i.e., 

Tor(C(G)) r 1. 
Finally, we need to prove that  Tor(C(G)) is finite. If Tor(C(G))=Tor(C(H)), 

this is clear. Otherwise, since [G : HI = p, one can find go E Tor(C(G)) with 

c(a)  = (c(a) n H, gol. 

Because [C(G) : C(G) M H] < p, one infers 

c(c )  = (c(a) n H,9o) <_ (C(H),go); 

therefore the abelian group 

Tor(C(G)) = (Tor(C(H)), go) 

is finite. 

Note that  part (ii) follows from (i). I 

LEMMA 2.2: Let p be a prime number. Assume that a prop group G contains 

a proper open subgroup F which is a free prop group of rank 2. Then G has 

torsion. 

Proo~ By a Theorem of Serre [$1], if G were torsion-free, it would be free pro-p, 

say of rank d > 1. Then (cf. [B-N-W]), 

2 = rank(F) = [G: F](d - 1) + 1 > 3, 
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a contradiction. I 

Let A and B be pro-p groups and L a common subgroup of them. The 

amalgamated free prop  product A HL B is the push-out of A and B over 

L in the category of pro-p groups, if in addition the groups A and B are 

canonically embedded in H (cf. [R2] for more details). 

LEMMA 2.3: Let G = (H, g) be a pro-p group generated by a subgroup H and 

an element g ~ H, with [G : H] < oo, and suppose that H is a free p r o p  product 

with amalgamation 

H =  A 1 ] _ [ A H B .  
L L'  

(i) Let X denote any of  the free factors of  H and assume that X is a finite 

p-group, and X g is conjugate to X in H, then there exists some element 

go E JV'c(X) - H of finite order. 

(ii) Assume in addition that L = L' = AI = 1, i.e. H = ALI  B,  p # 2, both A 

and B are finite p-groups and g C AfG(H). Then there exists some element 

go C Arc(A) - A of  finite order. 

Proof." (i) Let x E H be such that X g = X x. Then go = gx -1 C Arc(X)  - H.  
n pw 

Since [G : H] < oo, ~ E H, for some natural number n. So go E AfH(X),  

and therefore g~" E X (cf. [Z-M], Corollary (3.13)). It follows that go has finite 

order. 

(ii) Consider the set S of conjugacy classes (in H) of maximal finite subgroups 

of H. Then S consists of two elements, namely the classes represented by A and 

B (cf. [H-R1], Theorem 1). Obviously the odd-order group (g) acts trivially on 

the set S. So A g is a conjugate of A in H. The result then follows from part (i). 

I 

Remark: Part (i) of the above Lemma could be proved in more generality. One 

could take H to be the fundamental group of a finite tree product of p rop  groups 

and A a finite vertex group; then under the assumptions of the Lemma we reach 

the same conclusion. 

LEMMA 2 .4 :  

(i) I f  p > 3, GL2(Zp) contains no nontrivial finite p-subgroups. 

(ii) Let A, B ~ GL2(Z3) be such that A 3 = B 3 = I and [A, B] = I.  Then A 

and B generate a cyclic subgroup of  GL2(Za). 

(iii) GL2(Z3) contains no elements of  order 9. 

(iv) Let  H be a maximal  abe//an finite 2-subgroup of  GL2(Z2). Then H is 

conjugate to one of  the following subgroups: 
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the cyclic group of order 4 

(b) the Klein-four subgroup 

{[01 ;][; 
(c) the Klein-four subgroup 

{[; :1],[; 01]}. 

201 

a 2 + a + l - b 2 = O  and b ( 2 a + b + l ) = O .  

These equations have the solutions (a,b) E {(0 , -1) ,  ( -1 ,1 )}  over Z3, so that  

B �9 { I ,A ,  A2}. Hence (ii) is proved. 

(iii) Let C �9 GL2(Z3) be such that  C 9 = I hut C 3 r I .  By Lemma 2.5 (ii) in 

[H-R-Z] we may assume that 

- - 1  " 

(v) Let H be a maximal finite nonabelian 2-subgroup of GL2(Z2). Then H is 

isomorphic to the dihedral group and, up to conjugation, contains 

[1 ~ o]  
Proof: (i) Follows from Lemma 2.5 (iii) in [H-R-Z]. 

(ii) Let A, B E GL2(Za) be such that A 3 = B a and [.4, B] = I. Prom Lemma 

2.5 (ii) in [H-R-Z] one may assume that 

Note that  A 2 + .4 + I = 0. If [A, B] = I, i.e. A B  = BA,  then, by equating matrix 

entries, one finds that  B = aI - bA, for suitable a, b E Z3. Assume that  B r I; 

since B a = I, the minimal polynomial for B must be T 2 + T + I. By equating 

corresponding entries one finds the equations 
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We remark that  [C, C 3] = I;  therefore, as in part  (ii), C = aI  - bC 3, for some 

a, b C Z3. By equating matrix entries, one finds 

a 3 - b  3 - 3 a b  2 = 0  and 3 a b ( a + b ) + l = O .  

The second of these equations cannot be solved for numbers a, b E Z3, a contra- 

diction. Therefore there is no matrix in GL2(Z3) of order 9. 

(iv) Let H be a maximal finite abelian 2-subgroup of GL2(Z2). Let C E H be 

an involution. According to Lemma 2.5 of [H-R-Z], C is conjugate to one of the 

following matrices: 

[0110] ' [ 1 0  o _1], [1o o11. 
Assume 

C =  0 ' 

and let I ~ X E GL2(Z2). If [C, X] = I ,  then equating matr ix  entries one 

deduces that  X = a x I  + bxC ,  for suitable a x , b x  E Z2. Let X have order 2 n. 

We claim that  n = 1. Suppose n > 1. Consider Y := X 2"-1. Then Y ~ I and 

[C, Y] = I ;  so, similarly, there exist av ,  by C Z2 with Y = a v I  + byC.  From 

I = y 2  = a 2 i  + 2 a y b v C  + b 2 I  one infers 

a~ + b~ - 1 = 0 and 2ayby  = O, 

so that  either ay  -~ 0 or by = O. 

If by = 0 ,  t h e n Y  = - I s i n c e Y  ~ I .  Put  U : = X  2"-2. Then, for suitable 

au,  bv E Z2 one has U = a v I  + bvC,  and so 

- I  = Y = U 2 = (a~] + b~) I  + 2 a v b v C .  

Hence, by equating entries we get 

a~ + b~ + l = O and 2aubu - l = O . 

Here the second equation cannot be solved over Z2. So the case by = 0 cannot 

happen. 

Therefore ay  - 0, and so Y = -t-C . Let Z = X 2n-2. Then [C,Z] = I ;  

hence, as before, there exist az ,  bz E Z2 with Z -.= a z I  4- bzC.  Then Z 2 = 

(a 2 --t- 5271)1 + a z b z C  -= i V  implies 

a ~ + b ~ = 0  and a z b z = i l .  
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The first equation has only the trivial solution a z  = bz  = O. Then, however, 

the second equation cannot be solved, a contradiction. So n = 1. Therefore 

I = X 2 = a2x I + 2 a x b x C  + b 2 I ;  one infers that  

a2x + b 2 - 1 = 2 a x b z  = O, 

so that  either a x  = 0 or b x  = 0. Therefore X E { I , - I ,  C , - C } ,  and since X 

had been chosen to be an arbi trary element of 2-power order commuting with C, 

we conclude that  H = { I , - I ,  C , - C } .  Thus case (b) holds. 

Assume next tha t  

Let X C H;  from [C, X] = I ,  one concludes that  

01 X =  d2 ' 

where d~ C {1 , -1} ,  since X has finite 2-power order. Therefore X can have only 

order 2, and therefore H = { I , - I ,  C , - C } ,  i.e., case (c) holds. 

Finally, assume tha t  H contains no involutions that  are conjugate to 

[01 ;] or [1 o ~ 
Then we may assume that  6' = - I .  Since - I  is in the center of GL2(Z2), C is 

then the only involution contained in H. Therefore, H must be cyclic, since it is 

abelian. By case (b) the group {I, - I }  is not a maximal finite abelian subgroup. 

So H must contain some Y with y2  = C = - I .  By equating matr ix  entries, and 

taking into account tha t  Y has order 4 and so it cannot be a diagonal matrix,  

one shows that  Y must have the form 

where a 2 + bc + 1 = 0. Considering the latter equation mod 4Z2 one deduces 

tha t  it can only be solved over Z2, if either b or c is a unit in Z2. Without  loss 

of generality we assume that  c is a unit. Put  

Then 

T=[c01 acl] 1 " 



204 W.N. HERFORT, L. RIBES AND P. A. ZALESSKII Isr. J. Math. 

Replacing H by T - 1 H T  if necessary, we may assume that 

Next pick any X in H with [X, Y] = I. Then by equating the matrix entries 

of X Y  and Y X  and using an argument similar to those above, one finds that  

X E (Y). So case (a) holds. 

(v) First note that  a nonabelian finite 2-subgroup exists, namely 

{[~176 ;t}. 
Pick any nonabelian maximal finite 2-subgroup H of GL2(Z2). Then H must 

contain a nonabelian subgroup of order 8. There are precisely two isomorphism 

classes of groups of order 8: 

Q4 := (x, Yl x4 : y4 = 1, x 2 = y2 = Ix, y]) 

and 
Da :-- (x, y] x 4 = y2 _- 1, x y -- x - l ) .  

CLAIM 1 : Q 4  is not  a subgroup of GL2(Z2). 

Assume the claim to be false. Then, by case (iv)(a) one may assume that  

and that  

 =[01 1] 
0 ' 

where a 2 + bc + 1 = O. Here we refer to the proof of case (a), in order to find Y 

with y2  = - I .  Next note that  - I  = X 2 = IX, Y] = X Y X Y  implies the matrix 

equation - I  -- (XY) 2. By equating matrix entries one deduces the equations 

a 2 + c  2 = a  2 + b  2 = - l a n d a ( b - c ) = 0 .  S incea  2 + c  2 = - 1  cannot be solved 

for a, c E Z2 a contradiction arises. 

CLAIM 2: H ~ D4. 

Assume this is false. By Claim 1, H contains a proper subgroup L isomorphic 

with Da. Since H is a finite 2-group one finds a subgroup K such that  L ~ K  < H 

and [K : L] = 2. Let N be the unique cyclic subgroup of L of order 4; then N , ~ K  

and [L : N] = 2. Since Aut(N) has order 2, there exists k E K - N  acting trivially 

by conjugation on N. Then, however, (k, N) would be an abelian subgroup of 

order 8 contradicting (iv). 
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CLAIM 3: Up to conjugation 

[; o11 . 
Assume not. Since H is dihedral, it can be generated by two involutions X 

and Y. As pointed out above, the involutions of GL2(Z2) are conjugate to 

[10 O1] , [01 Ol l  or [~ ~ ] .  

Since - I  is central, by (iv) we may assume that 

Consider the quotient group GL2(F2) ~ Sa of GL2(Z2), and let ~r: GL2(Z2) ~ 
GL2(F2) denote the canonical epimorphism. Note that the 2-Sylow subgroup of 
$3 has order 2. Since X Y  has order 4, it is conjugate to 

[0 -;1, 
so that X - X Y  (rood ker(~r)), i.e., Y - I (mod ker(~r)). Then Y cannot be 

a conjugate of X. Therefore we conclude from (iv) that Y is conjugate to 

[; o11, 
a contradiction. 

This completes the proof of (v). | 

3. The proof  of  the theorems 

In this section we prove the theorems of the Introduction. We do this by 
considering a series of special cases. 

PROPOSITION 3.1: Let p be a prime number greater than 3. Let G be a p r o p  

group with an open norma/subgroup F which is a free prop group of rank 2. 

Assume that G has trivial center. Then G = F. 

Proo~ Assume G r F. By Lemma 2.2, G has torsion. Pick g E G - F  
with gP = 1. Consider the automorphism ~ of F defined by ~o(x) = g-Xxg 

(x E F). Then qo p = idF; hence by Theorem 6.7 of [H-R-Z], ~o = idF. Therefore 

C((g, F/) ~ 1. Since F has finite index in (g, F) and it has trivial center, it follows 

that C((g, F)) is finite. According to Lemma 2.1 this implies that r 7~ 1, a 
contradiction. | 
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PROPOSITION 3.2: Let G be a pro-3 group with a proper open normal subgroup 

F which is a free pro-3 group of rank 2. Assume that G has trivial center. Then 

a -~ C3 I_I C3. 

Proof: We proceed by contradiction. Let G have a proper open free pro-3 

subgroup F of rank 2, and suppose that G is a counterexample to our statement, 

i.e., assume that G ~ C3 H C3. By Lemma 2.2, there exists an element g E G - F  

of order 3. If conjugation by g induces the trivial automorphism on F, then 

C((g, F))  ~ 1, and so, by Lemma 2.1, C(G) ~ 1, negating one of our hypotheses. 

Therefore conjugation by g induces a nontrivial automorphism on F,  and hence, 

by Theorem 6.5 of [H-R-Z], (g, F)  ~ A I_I B, where A -~ B TM C3. Note that 

G ~ (g, F),  since G is a counterexample. Let 

(g, F) < L _< G 

with (L : (g, F))  = 3. By Lemma 2.3, there exists an element of finite order 

g E L - (g,F) that normalizes A, so g E A/'L(A). Then t 3 E (g,F) ~- A]_IB; 

hence g 3 is an element of order at most 3 (cf. [H-R1] Theorem At). Suppose the 

order of g 3 is 3; then the automorphism induced by t 3 by conjugation on F has 

order 3, since, as we have pointed out above, otherwise g 3 would centralize F,  

and this would imply that C(G) ~ 1; therefore g induces on F an automorphism 

of order 9. Now, the kernel of the natural map 

Aut(F)  > Aut(Z3 • Z3) 

is torsion-free (cf. [Lu] Theorem 5.8); hence g induces on Z3 • Z3 an automor- 

phism of order 9. However, this is not possible by Lemma 2.4 (ii). Thus g3 = 1. 

Since t E .AlL(A), we infer that there exist 1 ~ x E A such that x a -- 1 and 

[g,x] = 1. Therefore, by Lemma 2.4 (iii), either lx  or ix  -1 acts trivially on 

F / F  t ~- Z3 • Za, and so, by Theorem 5.8 of [Lu], either Ix or lx  -1 acts trivially 

on F.  Then, since i x  ~ 1 ~ tx  - I ,  either (gx, F) or (ix -1, F) has a nontrivial 

finite center, and thus, by Lemma 2.1, so does G, a contradiction. | 

Our next results deal with pro-2 groups. We shall prove Theorem 2 for p = 2 

in several steps, that will depend on the index of F in G. We distinguish three 

cases: [G : F] -- 2, [G :  F] = 4, and [G:  F] = 8. There is a natural action 

of G / F  on the Z2-module F / F  t. So we have a homomorphism of G / F  onto 

_~ GL2(Z2). 
First we state the following result on the structure of an automorphism of the 

free abelian pro-2 group Z2 • Z2. 
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LEMMA 3.3: Let G be as above. 
(i) If  IG/F[ > IGI then C(G) is nontrivial and finite. 
(ii) I f  G is of order 2 then w.r.t, a certain basis of Z2 • Z2 it is generated by 

one of the following elements: 

[ - ~  _01], [01 ~ ] ,  [ ~ - 0 1 1 "  

(iii) / f G  is of order 4 then w.r.t, a certain basis G has the following form: 

(a) the cyclic group of order 4 

([~ -:1}; 
(b) the Klein-four subgroup 

([01 10][: 01]) 
(c) the Klein-four subgroup 

([1 ~ o],[: Ol]). 
(iv) / f  G has order 8 then 0 ~- D4. One can assume that w.r.t, a certain basis, 

(v) Ire(G) = 1 then [G: F] _ 8. 

Proof of (i): In this case there exists g E G - F inducing the trivial action on 
F/F' .  Next consider H := (g, F). Then H acts trivially on F/F' .  By Lemma 
2.2, H has torsion and so we may assume that g has finite order. Then g acts 

trivially on F by Theorem 5.8 in fLu], and therefore C(H) is nontrivial and finite. 

Finally, by Lemma 2.1 (ii) we conclude the result. 

Proof of (ii): 

Proof of Off): 

Proof of (iv): 

Proof of (v): 
So the Lemma is proved. 

This follows from Lemma 2.5 in [H-R-Z]. 

This follows from Lemma 2.4 (iv). 

This follows from Lemma 2.4 (v). 

This follows from (i) together with Lemma 2.4 (iv)+(v). 
| 
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PROPOSITION 3.4: Let G be a pro-2 group with an open normal subgroup F of 

index 2 which is a free pro-2 group of rank 2. Assmne that G has trivial center. 

With the notation from Lemma 3.3 one has: 

(a) If, w i t h r e s p e c t t ~ 1 7 6  01] ) 0 - , then 

G-~ C 2 I I z ~ ;  

a c2 II(c2  • z2). 

Proof." By Lemma 2.2 the existence of a �9 G of order 2 is guaranteed. 

(a) By Lemma 3.1 in [H-R-Z], there exists a basis {x ,y}  of F such that x ~ = 

x -1 and y'~ = y-1. Hence, by Lemma 3.2 in [H-R-Z], G -~ 6'2 I_IC2 l_[ C2. 

(b) Let {e,y} be a basis of F / F '  such that 2 a = 9 ,  ~?a = e. Let x �9 F 

map canonically onto 2, �9 F / F  ~. Then y = x ~ maps canonically onto ~ �9 F/F ' .  

Hence (x, y}F' = F, and since F ~ is contained in the Prattini subgroup of F, 

one has F = (x, y), so that  {x, y} is a basis of F. Then G ~ C~ [I  Z2 (if a is a 

generator of C~ and b a generator of Z2, then a can be identified with a, and b 

and b a with x and y respectively). 

(c) This case is harder. S inceo~lF/F,=[~ _01 ], there exists a basis {x, y} of 

F such that  ya = y-1 and x ~ = kx, where k E F '  (cf. Theorem 3.1 in [H-R-Z]). 

Next we recall the notation and some facts from Theorem 5.3 in [H-R-Z]. Let F 

be the smallest normal closed subgroup of F containing y; then F is a free pro-2 

group on a topological basis homeomorphic with Z2, specifically 

r =  I I  
~eZ2 

For f E F and A �9 Z2, define c()~, f )  = ( x -X )~ f x  ~, and set 

Y = �9 z2}. 
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CASE 1: k E F*. In this case, it is proved in Theorem 5.3 of [H-R-Z] tha t  the 

space Y = {c(A,y)t A E Z2} is a topological basis of the free pro-2 group F, 

and a acts on each element u of Y by inverting it; furthermore,  c(A, y) -- y ~  

(mod F*) . By L e m m a  3.2 of [H-R-Z] 

where the first coproduct  is taken over the pro finite space Y. Note tha t  the 

identi ty element 1 of G is not in Y; define Y~ -- Y U {1}; then 1 is an isolated 

point  of Y~, since Y is compact .  Hence we may write 

Since x ~ = kx ,  it follows tha t  

(a,r> = L[ (a~>. 
uEY' 

a x = x - l k x a  C_ F ' a  C_ Fa .  

So a x E (a ,F ) .  Therefore, by Theorem 2 of [H-R1], a x must  be conjugate  in 

(a,  F> to a u  for some u E Y~ . In fact, we claim tha t  it is conjugate to a .  

To see this, note first tha t  since k E F*, a x -- a (modF*) ;  and so a ~ -= a 

(mod (a ,F)*) .  Then  the claim follows from the fact tha t  a 7 ~ a u  (mod (a ,F)*)  

for all u E Y. Thus  a * = a g, for some g E F. Then  x g  -1  E Ca(a)  - F. Since 

G* = F* (see claim 2 in the proof of Theorem 3.1 in [H-R-Z]), g is in (y) modulo  

F*; hence x ~ -- xg  -1  and y form a basis for F .  Moreover, x '~ = x ~ and y~ = y -1 .  

Finally we assert tha t  this implies tha t  

c = F ~ <a> ~ (C~ x Z2) I I  c2. 

To see this, let r and t be elements of order 2, and s a generator  for Z2; then 

(<,.> x <s>)H<t> = <~,,.t> ~ <,.>, 

and clearly s r = s and (rt)  ~ = (rt) -1.  Therefore it suffices to check tha t  (s, r t )  ~- 

F.  Note tha t  the minimal number  

d(((r> x <s>) ]_[(t>) 

of (topological) generators  of 

(<~> x (~>)II<t> 
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is 3, since 
d(((r)  • (s}) U ( t } )  = d(((r)  • (s)) + d((t))  

(cf. [Lu], Proposition 2.9). Therefore, 

d(<~, r t ) )  = 2. 

Hence t ~ (s, rt} and r ~ (s, rt) .  It follows that (s, rt} is torsion*free since, being 

normal, it does not contain any conjugate of t or r (cf. [H-R1], Theorem A'). So, 

(s, rt) M <r,s) = (s}((s,  rt) M (r)) = (s), 

and 

Since 

(s, rt) M (t) = 1. 

(s, rt) % ((r) • (s)) H(t), 
it follows from the Kurosh subgroup theorem (cf. [B-N-W]) that  

<s, rt> = <s, rt> n <r, ~> ]_I(~, rt> n (t) I I  T = <~> H T, 

where T is a free pro-p group. Thus, (s, rt) is free pro-p of rank 2, and so 

(s, rt) ~- F, 

as desired. 

CASE 2: k ~ 1 ~*. First we recall some facts about the structure of F/F* (see 

section 4 in [H-R-Z] for details). The elements of F/F* have the form ya (a 6 

F2[[(x)]]), where F2[[(x>]] is the completed group algebra. The map 

F~[[<x>]] - -~  r / r*  

that  sends a to ya (a e F2[[(x)]]) is an isomorphism of F2[[(x)]]-modules. Let 

E F2[[(x)]] correspond to k-~F * ~ F/F* under this isomorphism, i.e., 

y'~ =_ k - x  (mod F*). 

Since F2[[(x)]] is a local ring with unique maximal ideal (x - 1), there exists a 

natural number m and a unit u of F2[[(x)]] such that  

= (x - 1)mu. 
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The topological rings F2[[(x}]] and F2{{T}} (the ring of formal power series in the 

indeterminate T over F2) are isomorphic under the correspondence x ~ > T + 1 

(cf. [El Proposition 3.1.4, page 63). Hence 

r / r * ( k  -*} -~ F2[[(~)]I/(~) -~ F2{{T}}/{Tm}. 

It follows that  1,x - 1 , . . . , ( x  - 1) "~-1 form a basis for the F2-vector space 

F2[[{z}]]/{~}, and therefore, y, y * , . . . ,  y ~ - ~  form a basis for r / r * ( k - ~ ) .  

Consider the elements 

cl = y ,  c2 ----c(1,y), . . . ,  cm = c ( m -  1,y), 

where, as above, 

c(~, S) = (x-~)~Sx~ = (kx) - l~Sx ~ 

Note that  

(,) 

Put  

( f  e F, ~ e Z2). 

c ( A + l , k ) - l c ( A , y ) = y  ~ ,  

K = {c(A,k)l A E Z2} and C = {e l , . . .  ,Cm}. 

It is proved in Theorem 5.3 of [H-R-Z] that  the pointed topological space U = 

C U K,  with distinguished point {1}, is a pointed topological basis of the free 

pro-2 group F; moreover, u ~ = u -1 for all u E U. It follows then as an easy 

generalization of Lemma 3.2 in [H-I%Z] that  

Is, r) = I I / ~ - / ,  
uCr. U 

where the free pro-2 product is taken over the space U. Given u E U, (su) ~ E 
Is, F / has order 2, and so it is a conjugate in Is, F} of su',  for some u' E U (cf. 

[H-R1] Theorem 2). Therefore, 

(su) ~ = su'  (mod r*) ,  

for each u E U and a corresponding u ~ E U. In other words, the element x acts 

continuously on the subspace 

s v r *  = {sur* l  ~ e u }  
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of r/r*.  
Since a K  is homeomorphic with g2, the points c l ,c2, . . . ,Cm are the only 

isolated points of the space U; so, the points ac lF* ,ac2F* , . . .  , ac~F*  are the 

only isolated points of a U F * .  Hence x acts by conjugation on the finite subset 

{OtClF* , olc2I~*, . . . , o tcmF* }. 

Next observe that  

(aci )  ~ = x - l a c i x  = a x - ~ c i x  = a x - ~ ( x l - ~ ) ~ y x i - l z  = a ( x - i ) ~ y x  i = c ~ c i +  1. 

Therefore, 

and so 

Hence 

Now, by (*), 

(O~Cm)XF * - -  a c r e + i F *  E {OlClF*, o ~ c 2 F * , . . . ,  OlCmF*}, 

So, 

a c ~ + l r *  = OlC1 F*.  

Cm+lF* = clF* in F/F*. 

yXl - -  1 

c~ = c ( i ,  k )  . 

y = Cl -~ Cm+l = c ( m  + 1, k ) y  ~ =- k-X--~=r--~y ~ 

where in the last congruence we use the fact that 

c(~ + 1, k) = k -  ~-~ 

(see page 397 in [H-R-Z]*). Therefore, 

y l _ X  m ,~ x m - 1  
= y =-1 (rood P*). 

Hence, 
X m - -  1 

1 - x m = a in F2[[(x>]]. 
x - 1  

Since F2[[(x>]] is an integral domain, one deduces that 

= - ( x  - 1 ) .  

* This corrects a misprint on page 397, line 8 of [H-R-Z]. 

(mod F*), 
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Comparing this with the definition of m, we infer that 

m = l .  

So 

thus 

c = {c~} = {y}; 

213 

So, 

zg  -1 E r  - r .  

Next observe that g C (y,F'> _< (y ,F*) .  Hence xg -1 and y are linearly 

independent mod F*, i.e., { x g - l , y }  is a basis for the free pro-2 group F. It 

follows that 
G = (F, a> = (xg -1, y, ay)  = (xg -1,  y) ~ (ay), 

and order(ay) = 2, (xg-1)  ~ = xg -1,  yay = y -1 .  Thus, 

G = F : ~  ( c t ) ~ - ( C 2 x Z 2 ) H C 2 ,  

as we established in Case 1. | 

PROPOSITION 3.5: Let G be a pro-2 group with an open normal subgroup F of  

index 4 which is a free pro-2 group o f  rank2.  A s s u m e  that  G has trivia/center.  

In the notat ion of Lemma 3.3: 

(d) C ~ C, LI C2 if 

(e) v ~ (c2 • c2) LI c2 if 

([0 10] 011)  

(ay) ~ - ay  (mod F*), 

and ayF* is the only isolated point of the topological space aUF* and so x must 

stabilize ayF*. Hence (ay)  ~ must be a conjugate of ay  in (a, F), say 

where z e (a, F) = <ay)F. Write z = ayg,  with g e F. Then 
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(f) G ~  (C2 x C2) IJc2(C2 • C2) I_Ic~(C2 x C2) i f  

{['0 o] [o' 0]) 
Proof." Note that there exists a chain of normal subgroups of G 

Isr. J. Math. 

F < H < G ,  

so that  [H : F] = 2. I fC (H)  ~ 1, then IC(H)[ = 2 s i n c e C ( H )  N F  = 1; and 

this would imply, according to Lemma 2.1, that C(G) r 1, contradicting our 

assumption. So, d(H) = 1. Hence H is isomorphic to one of the groups (a), (b) 

or (c) of Proposition 3.4. 

Next we proceed to prove a series of claims that will lead to a final proof of 

the Proposition. 

CLAIM 1: There exists an element c E H of order 2 whose conjugacy class in H 

is fixed by G under conjugation, and (c) is a free factor of H. 

Since H is a normal subgroup of G, the group G acts by conjugation on the set 

Conj(H) of conjugacy classes of involutions of H. In case (a), there are exactly 

three such classes (see Theorem A' in [H-R1]); therefore the image of the action 

G --+ Aut(Conj)(H)) ~ $3 

must be of order 1 or 2, since G is a pro-2 group; hence G fixes at least one of the 

elements of Conj (H). In case (b), Conj(H) consists of just one element. Finally, 

if H is of the form (c), there are exactly two conjugacy classes of involutions in 

H; let Cl, c2 E H be representatives of those classes; note that CH(Cl) ~ C~/(c2); 

so no automorphism of H can map the conjugacy class of cl to the conjugacy 

class of c2; hence, in this case, both conjugacy classes of involutions of H are 

fixed by the action of G. 

CLAIM 2: If  C is as in Claim 1, there exists some element go E G \ H of finite 

order such that [go, c] = 1. 

Since (c> is a free factor of H, the conditions of Lemma 2.3 (ii) apply. Hence 

there exists go E G \ H of finite order such that go E Afc((c)) \ H. Since c has 

order 2, one deduces that  [go, c] = 1. 

Observe that  such go has at most order 4 since [G : F] = 4 and that (go, e, F)  
~---G. 
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CLAIM 3: I f  go has order 4, then case (d) holds: G ~- C 4 H C 2 .  

Since [G: F] = 4, G = (go,F) and I(g0,c>l = 4. So (go,c) = C4 and go ~ = c. 
Since go has order 4, G is naturally isomorphic to (go>. Hence by Lemma 3.3 the 

automorphism induced by go on F / F '  with respect to a certain basis of F is 

[01 
Therefore, the matrix of the automorphism of F / F  ~ induced by conjugation by 

r is  /I-: 
Then 

-~c Hc:Hc: 
by Proposition 3.3. Note that  the basis of F / F  ~ can be lifted to a basis {x, y} of 

F such that  
x c = x  -1 and y C = y - 1  

(cf. Theorem 3.1 in [H-R-Z]). On the other hand, it is clear that  

H -= (c, cx, cy). 

Now, we know that  

x g~ =~ y (mod F ')  and ygO _~ x -1  (mod F') ,  

and hence 

(cx) ~~ =- cy (mod F' )  and (cy) g~ - cx -1 (mod F') .  

Since go fixes the conjugacy class of c, this means that go permutes the conjugacy 

classes in H of cx and cy. 

Consider two cyclic groups (a) and (b) of orders 4 and 2, respectively. Let 

v: P = (a) II (b)  c 

be the epimorphism determined by ~(a) -- go and ~(b) -= cx. 

We assert that  ~ is an isomorphism. To see this, observe first that  ker(~o) is 

torsion-free, for a nontrivial element in P of finite order must be conjugate to 

either a, a2,a 3 or b (cf. [H-R1] Theorem A'), and these elements are sent by ~o 
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to go,g2,g 3 , cx, respectively; but none of these is trivial. Put  L = ~ - I ( F ) .  It 

follows that  L is torsion-free, since a torsion element of L must be in the kernel of 

~. Note that  L is an open normal subgroup of P; hence, by the Kurosh subgroup 

theorem, L is a free pro-2 group and its rank can be computed by means of the 

following formula (cf. [B-N-W]): 

rank(L) = ( [P :  L] - [P :  L(a)]) + ( [P :  L] - [P :  L(b)]) - [P:  L] + 1 = 2. 

Therefore L -~ F.  It follows from the Hopfian property of finitely generated 

profinite groups that  the restriction of ~ to L is an isomorphism from L to F (cf. 

[R1] Proposition 7.6). Thus 

L n ker(~) = 1. 

Since [P : L] is finite, this implies that ker(~) is finite, and being torsion-free, it 

is trivial. So ~ is an isomorphism and 

G~c, u = C2.  

This proves Claim 3. 

Therefore, we may assume from now on that order(g0) = 2, so that  (go, c) ~- 

C2 x C2. Denote by 7 and p the automorphisms of F induced by conjugation by 

go and c, respectively. Then (7, P) ~ C2 x C2 since C(G) = 1. Let q and fi be 

the automorphisms of F / F  ~ induced by 7 and p, respectively. We have 

G' = (i', P) -~ C2 x C2. 

According to Lemma 3.3 (iv), there is a basis of F / F  ~ such that one of the 

following is true: 

CLAIM 4: In Case 1, G ~- (C2 x C2) H c2. 

By assumption there exists an element cl E (go, c) that induces an automor- 

phism on F / F  ~ whose matrix with respect to an appropriate basis is 
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Hence, by using Theorem 3.1 of [H-R-Z], this basis can be lifted to a basis {x, y} 

of F such that 
x cl = x -1 and yCl = y-1. 

Note that  

HI -- <Cl,F> = <Cl,ClX, C2y> ~- C2 ~_I C2 H C2, 

by Lemma 3.2 of [H-R-Z], and observe that H1 has index 2 in G. Also, there 

exists c2 E (go, c) - HI such that 

x r  and y C 2 - x  ( m o d F ' ) .  

Hence 

F1 = (x,x c:) 

is a free pro-2 group with basis {x,x~:}, and c2 permutes the elements of this 

basis. Furthermore, one easily checks that 

x cl = x -1 and (xC2) ~' = (2:c2) -1 .  

Thus G = (El, c2, r 

Consider groups (all, (a2/ and (a3/, each of order 2, and the epimorphism 

(<a,> • <a2>) I]<a3> a 

determined by ~(al)  = cl , ~o(a:) = c2 and ~(a3) = clx. We assert that ~ is an 

isomorphism. To see this, remark first that ker(~) is torsion-free since an element 

of finite order of <al) • (a2>) I_[(a3> must be conjugate to either al, a2, ala2 or aa 

(cf. Theorem A' in [H-R1]); and hence ~o cannot map such an element to 1. Since 

F is torsion-free, it follows that  ~ - I ( F )  is also torsion-free. Note that  ~ - I ( F )  

is a normal subgroup of <al> • (a2)) I_~(a3> of index 4. Therefore, by the Kurosh 

subgroup theorem for pro-2 products, ~-1 (F) is a free pro-2 group of rank 2 (cf. 

[B-N-W]). Hence the restriction of ~ to V -1 (E) is an isomorphism from ~a-l(F) 

to F (cf. [Pal] Proposition 7.6). So V- I (F )  nker(~)  = 1. Since [G: ~ - I (F ) ]  = 4 

and ker(~a) is torsion-free, one deduces that ker(~) -- 1, as asserted. 

CLAIM 5: In Case 2, V ~ (C2 x C2)I.]c,(C2 • C2) LIc2(C2 • C2). 

By assumption there are elements cl, c~. E (go, c} such that the automorphisms 

they induce on F/F '  can be represented by matrices 
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respectively, with respect to a convenient common basis for the free abelian pro-2 

group F / F  ~. Clearly 

(cl,  c~) = (g0, c). 

Consider the automorphism induced on F by conjugation by el; by Theorem 3.1 

in [H-R-Z] the basis of F / F '  can be lifted to a basis {x, Y0} of F such that 

(**) x cI = x  and ygl = y o  1 . 

By Proposition 3.3 (c), we have 

L :  (F~c1) - -  ({Cl) • (X))H(ClYo). 

Put L1 -- (el,x) = (cl))< (x); then 

L = L1 I_I(clyo). 

By Theorem B' of [H-R1], 

e L ( e l )  : L1. 

Now, 

L~ 2 = (CL(Cl) ) c2 : CL(C~ 2) : CL(Cl) = L1. 

Hence x ~ = c~x r (i = 0, 1;r E Z2). But on the other hand, taking into account 

the form of the matrix of the action of c2 on F / F  I, we have that x ~2 --- x - i f  t, 
for some f l  E F I. It follows that i = 0, f '  = 1 and r = -1 ,  i.e., x c2 = x -1. 

Exchanging the roles of Cl and c2 one finds a basis {Xo, y} of F such that 

(***) y~2 : y ,  yr =y-1. 

One deduces that  {x,y} is a basis for the group F ; for otherwise, y : xx*,  
where x* C F*, the Frattini subgroup of F; this would imply that {y, Y0} is a 

basis of F and hence that the matrices 

[~ 01]  and [ - ~  01]  

are similar over the ring Z2, a contradiction. 

Let A be the free pro-2 product with amalgamation 

A = ((ax) x (a2)) H ((a3) • (a4)) H ((a5) • (a~)), 
a I ~-~t$3 ~4 - ~ a 6  
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where ai, i -- 1 , . . . ,  6 are elements of order 2. Note that A -- (al, a2, a4, a5). Let 

be a map defined as follows: 

~(al)  :---- e l ,  ~(a2) := c2x, v(a4) := c2, ~(a5) := cly. 

Next extend ~ by setting 

~(a3) := ~(al),  v(a6) := ~(a4). 

By using the formula (**) one verifies that ~ ({a l , . . . , a6} )  satisfies the same 

relations as {a l , . . .  ,a6}. So ~ extends to an epimorphism from A to G. We 

shall prove that ~ is an isomorphism. First note that ker(~) is torsion-free for, 

according to Theorem (3.11) in [Z-M], any nontrivial element of finite order in A 

must be conjugate to an element of the set {ai, i = 1 , . . . ,  6} U {ala2, aaa4, a5a6}, 

and clearly none of these elements is in ker(~). It follows that ~-1 (F) is torsion- 

free since F is torsion-free. 

Recall (cf. [R2]) that A is the pro-2 completion of the abstract free product 

with amalgamation 

Ao = ( ( a l )  • (a2})"kal=a a ((a3)  • (a4))"ka4=a 6 ( (as}  • (a6)) .  

Define a tree with three vertices {vl,v2,v3} connected with two edges 

{el,e2} such that ei connects vi with vi+l for i = 1,2. Define a tree of 

groups with G(vl) := (al) • (as), G(v2) := (a3) • (a4), G(v3) := (a5) • (a6), 

G(el) :---~- ( a l  = a3), G(e2) :=  (aa = a6). 
In this way Ao can be naturally identified with the fundamental group of this 

tree of groups. 

Since ~ - I ( F )  is an open subgroup of A, it is the pro-2 completion of 
Ao n ~ - I ( F ) .  We claim that Ao n ~ - I ( F )  is a free abstract group of rank 2. 

Since Ao n ~-1 (F) ,~ Ao and Ao N ~o - I ( F )  intersects trivially with the free factors 
in Ao, we conclude from Proposition 11, p.120 in [$2] that  Ao n ~ - I ( F )  is a free 

subgroup of index 4 in A0. 

According to a theorem of Serre (see [S2], Exercise 3 on p.103) we have 

rank(A0 n ~o-l(F)) -- 1 + [A0: Ao N ~- I (F ) ]  = iG-~i)l := iG(vi) I 

( ( 1  2 ) ( ~  1 1 ) )  = 1 + 4  + - + ~ +  = 2 .  
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Thus the subgroup ~ - I ( F )  of A is free pro-2 of rank 2. Therefore, the 

restriction of T to 9 - a ( F )  maps the free pro-2 group ~ - I ( F )  onto the free pro-2 

group F,  and so it is an isomorphism (cf. Proposition 7.6 in JR1]). It follows 

that ker(~p) N ~ - I ( F )  = 1; hence ker(~) is finite, and thus ker(~) = 1, since it is 

torsion-free. Therefore ~ is an isomorphism. | 

PROPOSITION 3.6: Let G be a pro-2 group with an open normal subgroup F of 

index 8 which is a free pro-2 group of rank 2. Assume C(G) = 1. Then, in the 

notation of Lemma 3.3, G ~- D4 and G ~-D4 [Ic2 (C2 x C2). 

Proof: Since G / F  is a finite 2-group, there exist intermediate subgroups 

F < H < G  

such that  [ H :  F] = 4 and [G:  HI = 2 (cf. [HI Theorem 4.3.2) and H ~ G. By 

Lemma 2.1, C(H) = 1. Then H is isomorphic to one of the groups (d), (e) or (f) 

of Proposition 3.5. Since [G : HI = 2 one can find 9 E G - H so that  G = (9, H). 

Observe that the group H contains a maximal finite subgroup X such that X g 

is conjugate in H to X (cf. [Z-M], Theorem (3.11)): namely, in case (d), X ~ C4 

is a free factor of H; in case (e), X -~ C2 • C2 is a free factor of H; in case 

(f) ,  G acts on the set of conjugacy classes of maximal finite subgroups of H 

by permutation; since there are exactly three of them, we conclude that one of 

them is fixed. We fix X to be the free amalgamated factor which belongs to this 

conjugacy class. 

In any case, we deduce from Lemma 2.3 that there exists an element go E 

AZG(X) \ H of finite order. Therefore, T = (go,X I is a group of order 8, and 

G = F ~ T. Note T --- G -~ D4. By Lemma 2.4 (v) we may assume that  

Let H1 denote a normal subgroup of index 2 containing the matrix K. Let H1 

denote the preimage of H1. Then by Proposition 3.5 (f) 

H,  ~(C2 • C2) H ( C 2  x C2) H ( C 2  x C2). 
c2 c2 

There exists t E T - H1. Let A = (Cl,C2) denote the middle factor in the 

decomposition of H1 above where Cl, c2 are generators of the amalgamating 

subgroups. 

We claim that  t leaves the conjugacy class of A invariant. In order to prove 

this consider the set of the conjugacy classes of maximal abelian finite subgroups 
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of H1. By Theorem (3.11) in [Z-M] each of the three factors represents precisely 

one such conjugacy class. Next note that  cl, c2 are the only involutions in H1 

up to conjugation having infinite centralizers in H1. Therefore the only factor 

having two involutions with infinite centralizers is precisely A. Hence t leaves 

this conjugacy class invariant. 

By Lemma 2.3 (ii) one finds gl �9 ( G -  H 1 ) 0  .N'G(A). Note that 

g2 �9 H1 nAfq(A) = A, where the latter equality follows from Corollary (3.13) in 

[Z-M]. So L := (A, gl) has order 8. Since L A F  = 1 we conclude L ~ G ~ D4. So 

L is not abelian and since, as remarked above, cl and c2 are the only involutions 

having infinite centralizers, we conclude that ~1 = c2. 

Therefore the conjugacy classes of the first and the last factor in the 

decomposition of HI are permuted by gl. Let A1 := (cl,Co) now denote the 

first factor. Then G = (A1,91). 

Define 

B := {bl,b2l b 2 =ba2 = l , b  b~ =b~ 1) H (ba, b4]b 2=b42=[ba ,b4]= l ) .  
bl -~b3 

Note that d(B)  = 3. 

Let 

r : {51, b2, 54} 

be a map defined as follows: 

{cl,gl,Co} 

r := Cl, r : =  g l ,  r :--- Co. 

Note that  r extends to an epimorphism from B onto G. 

Recall that B is the pro-2 completion of the abstract free product 

Bo := (bl,b21 b 2 = b~ = 1, b b~ = b-~ 1) *b,=ba (ba,b4[ b~ = b 2 = [ba,b4l = 1). 

Since r  is an open subgroup of B, it is the pro-2 completion of 

B0 n r  We claim that  B 0 0  r  is a free abstract group of rank 2. 

Since B00  r (F) ,~ Bo and it intersects trivially with the free factors in B0, an 

application of the Kurosh subgroup theorem yields that  B0 Cl r  is a free 

subgroup of index 8 in B0. 

Moreover by exercise 2) on p.57 in [S2] one has 

rank(B0 Cl r  = 1 - 4 + (4 - 1) + (4 - 2) = 2. 
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Therefore d ( r  = 2. Hence the restriction of r to r  maps the free 

pro-2 group r  onto the free pro-2 group F,  and so it is an isomorphism 

(cf. Proposition 7.6 in [R1]). It follows that  ker(r r  = 1; hence ker(r is 

finite, and thus ker(r = 1, since it is torsion free. Therefore r is an isomorphism. 

I 

We are finally in a position to finish the proof of Theorem 2. 

Proof of Theorem 2: We simply put together the results of this section. Assume 

F r G. Then Proposition 3.1 proves the Theorem for p > 3, Proposition 3.2 for 

p = 3, Proposition 3.4 for p = 2 in case [G : F] = 2, Proposition 3.5 for p = 2 

in case [G : F] = 4, and Proposition 3.6 for p = 2 in case [G : F] = 8. Finally 

Lemma 3.3 (v) shows that  if p = 2 and [G : F] _> 16, then C(G) r 1, so that,  in 

fact, this case does not arise under the conditions of the Theorem. These cover 

all cases, and thus the theorem follows. I 

Proof of the Corollary: Let G := F >4 (a} be the holomorph. We claim that  

C(G) = 1. Indeed, assume 1 ~ g  EC(G) .  SinceC(F)  = 1 one can find k E N 

and f E F with g = f a  k. Since [g,a] = 1 one has If, a] -- 1 and so ( fak)  p" = 

fP" = 1, so that  f = 1. Hence a k = 1, i.e., g = 1, a contradiction arises. So the 

claim holds. 

Thus G has the form as stated in Theorem 2. Therefore by Theorem (3.11) in 

[Z-M] a is conjugated to an element of one of the factors of G. Assume w.l.o.g. 

that  a is contained in one of the factors. Let Go denote the abstract  group 

obtained from the construction of G by replacing L[ by �9 and Z2 through Z. 

Note that  G is the pro-p completion of Go and so Go can be considered as a 

dense subgroup of G containing a. Therefore Go M F is an abstract  free dense 

a-invariant  subgroup. I 

LEMMA 3.7: Let G be a pro-p group which is a finite extension of Z v. Suppose 

that the center of G is torsion free. Then either G ~- Zp or it is the dihedral 

pro-2 group G ~ C2 [I C2. 

Proof." Let p > 2. If G has an element g of finite order, then since Aut(Zp) -~ 

Zp x Cp-X the element g must centralize Z v. Hence by Lemma 2.1 the center 

of G is nontrivial. This means that  G is torsion free and therefore isomorphic 

to Zp. 

Let p = 2. If G is torsion free, then G ~ Z2 and we are done. Suppose G has 

torsion. Consider C = Ca(Z2). We claim [G : C] = 2. Indeed C is torsion free, 

since otherwise we have a contradiction by Lemma 2.1, so C ~ Z2. Therefore C 

admits  a unique automorphism of order 2 (Aut(Z2) ~ Z2 x C2). This implies that  



Vol. 107, 1998 FINITE EXTENSIONS OF FREE PRO-p GROUPS 223 

the product  of any two elements g, h C G - C belongs to C, since gh centralizes 

C. It follows that  [G : C] = 2 and G = C )~ C2 ~ C2 ]_I C2. | 

Proof of Theorem 1: If the center of G is torsion free, we are done by Theorem 

2 and Lemma 3.7. Assume G has a finite central subgroup C. We shall argue by 

induction on the index [G : F]. Consider the epimorphism f : G -----+ G/C. Since 

[G/C : f (F ) ]  < [G : El, by the inductive hypothesis G/C = HI(7-/,A) is the 

pro-p fundamental group of a finite graph A of finite p-groups. Define a graph 

of groups (6, A) by setting 6(m) = f -1  (7-/(m)) for all m e A with embeddings 

of the edge groups into the vertex groups defined in an obvious way. Then using 

the universal property of the fundamental group (see (3.2) in [Z-M]) it is easy to 

check that  G ~- 111(G, A). | 

Proof of Theorem 3: The first statement of the Theorem follows from Lemma 

3.1 in [H-R2]. 
We turn to the proof of (i)-(iii). 

Proof of (i): By the first statement of the Theorem it is enough to consider 

the conjugacy classes in GL2(p) of elements whose order is prime to p. These 

conjugacy classes can be represented as follows (see [G], p. 404): 

(a) diagonal matrices with entries in Fp; 

(b) upper triangular matrices with equal elements on the diagonal; 

(c) companion matrices of quadratic irreducible polynomials over Fp. 

We next count the conjugacy classes of matrices of order s: 

For (a) there are exactly r such matrices. 

For (b) we just note that all elements of that form are of order divisible by p. 

For (c) we use 2.47. Theorem (ii) in [L-N]. One finds, in our case, that the 

cyclotomic polynomial of a primitive sth root of unity over Fp factors into exactly 

r distinct monic irreducible polynomials of the same degree d, where d is the 

least positive integer such that pd ~_ 1 (mod s) holds. In our situation d = 2, 

so that  s divides p2 _ 1 but must not divide p - 1. 

Summarizing, we find that  the number of conjugacy classes of matrices of order 

s dividing p - 1 is r and if s does not divide p - 1, r  

Proof of (ii): Here p = 2. 

CLAIM 1: I. f s E S ,  t h e r e e x i s t s k C N w i t h s = 2 k 3 .  

This follows from Lemma 2.5 (i) in [H-t{2] together with Theorem 5.8 in [Lu]. 

CLAIM 2 : 6  ~ S. 
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Let a,-y E Aut(F2) have orders 3 and 2 respectively and assume that  [a, 7] = 1. 

First consider the action of a and 7 induced on F2/F~. By Lemma 3.3, we may 

assume that  in F2/F~ we have chosen a basis such that  7 has one of the following 

forms: 

[01 101 , [1 ~ : , ]  [o I o ]  
On the other hand, one can check that  there are no matrices of order 3 which 

commute with the first two matrices. So ~, must have the form of the last matrix.  

By Theorem 3.1 in [mR-Z] one finds a basis {x, y} of F2 with x ~ = x -1 and 

y~ = y-1.  Since a acts fixed point free on F2/F~, we conclude that  F2 = (x, xa). 
By assumption, a and 7 commute; therefore the elements x ~ and x ~2 get inverted 

by 7. So one can choose y = x a. Next consider the action of a and 7 on 

4 := F2/[F2, F~]. Since every nontrivial automorphism a of F2/F~ ~- Z2 x Z2 

of order 3 satisfies the matrix equation a 2 + a + I = 0, there exists k E 4 '  

with x ~2 --- y~ = x - l y - l k .  Here and up to the end of the proof of Claim 2 

we denote the images of x and y in 4 by the same letters respectively. Note 

tha t  4 '  = ([x,y]) ~ Z2 and so a and 7 act trivially on 4 ' .  Since a and "7 

commute one immediately finds y'Y~ = (y-1)a  = yxk-1. On the other hand 

y'~'Y = x-'~y-'Yk = xyk. Therefore Ix, y] = k -2. Since Ix, y] is a generator of 

4 ' ,  and k -2 E (4')*,  a contradiction arises. Thus Aut(F2) cannot contain an 

automorphism of order 6, i.e., 6 r S. 

CLAIM 3: {2,4} C S. 

This follows from Theorem 2(3). 

CLAIM 4: S ---- {2, 3, 4}. 

This follows immediately from Claims 1, 2 , 3  and Lemma 2.4 (iv)+(v) together 

with Theorem 5.8 in [Lu]. 

CLAIM 5: c(2) --= 4. 

Let a be an automorphism of F2 of order 2. By Proposition 3.4 there are 

exactly three types (a), (b), and (c) of G := F2 x {a) which correspond to the 

three conjugacy classes of induced automorphisms on F2/F~ listed in Lemma 3.3. 

If  (a) holds, then by Theorem 3.3 in [H-R-Z] there is a basis {x, y} of F2 such 

tha t  x ~ = x -1 and ya _= y ,1 .  Therefore such an a is unique up to conjugation 

in Aut (F2). 

If  (b) holds, then there exists x E F2 such that  F = {x, x~). Therefore such 

an a is unique up to conjugation in Aut(F2). 
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If (c) holds, then a := C2 I_I(C2 x Z2) = (cl) I_I((c2) x (z)), and so there exists 

f E F2 with a f -- ci for exactly one i E {1, 2}. 

Therefore a is conjugate in Aut(F2) to the automorphism induced by conju- 

gation with cl or c2. So we can assume that  c~ E {Cl,C2}. Note that  z or a z  

belongs to F2 and let y denote this element. Pick a basis {x := ClC2,y} of F2. 

If a = c2 then a fixes y and inverts x, and there is only one such c~ up to 

conjugation in Aut(F2). 

If c~ -- cl then (~ cannot have fixed points in F2 since CG(Cl) ~- (Cl) by Theorem 

B in [H-R1]. Note that  x ~ = x -1, ya -- y~. Such an (~ is unique up to conjugation 

in Aut(F2). 

CLAIM 6: c(3) ---- 1. 

Since GL2(2) ~ $3 contains only one conjugacy class of elements of order 3, 

the claim follows from the first statement of the Theorem. 

CLAIM 7: C(4) : 1. 

Let c~ E Aut(F2) have order 4. So, by Proposition 3.5 (d), G = C4 ILl C2 = 

(c1} ll{c2}. Hence there exists f E F2 with a I = Cl by Theorem A in [H-R1]. 

Therefore a is conjugate in Aut(F2) to the automorphism induced by conjugation 

with cl. Note that  G contains precisely one free pro-2 subgroup of index 4, namely 

F2. Let x : =  OL2C2, y := ac2a,  then F2 = (x ,y}  and x ~ = y, ya = x -Z .  Thus 

there is only one such a up to conjugation in Aut(F2). 

This completes the proof of (ii). 

Proof  o f  (iii): 

CLAIM 1:T_f8 C S, there exists  k E N with s = 2k3. 

The proof of this follows from Lemma 2.5 (ii) in [H-R2] together with Theorem 

5.8 in [Lu]. 

CLAIM 2 : 6  ~ S. 

Let a ,  q, e Aut(F2) have orders 3 and 2 respectively and assume [a, ~,] = 1. 

First consider the action of a and "), induced on F2/F~. By Maschke's Theorem 

one may assume that  7 corresponds to a diagonal matrix 

{[o 1 :.1) 
where ez,e2 E {1 , -1} .  We now show that  both  of them are - 1 .  Suppose not; 

then from [c~, ~,] = I one deduces that  a with respect to the same basis must have 
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a diagonal  form contradic t ing the fact tha t  a is of order 3. Thus  3' inverts every 

element  of F2/F~. 

By T h e o r e m  2 (2), G -~ (a} [I(fl} --- C3 I_[ C3. We fix a basis {x, y} of F2 such 

tha t  x ~ = y and y~ = x - l y  -1 (in fact put  x := t3a- l , y  := a - l f l ) .  

Next  consider the  act ion of a and ? on �9 := F2/[F2, F~]. For the rest  of proving 

Claim 2 we denote  the  images of x, y in �9 by the same letters respectively. There  

exists k E (b' with x ~ = x - l k .  Note tha t  a and 7 act  tr ivially on ~ .  Since a 

and 7 c o m m u t e  one immedia te ly  finds y~ = y - l k  and so y ~  = ( y - l k ) ~  = yxk.  

On the other  hand  y~'r = x-'Yy-'~ = xyk-2.  Therefore  [x, y] -- k 3 follows. Since 

[x, y] is a genera tor  of ~ ' ,  and k 3 C (~ ' )* ,  a contradict ion arises. 

Hence Aut(F2)  cannot  contain an au tomorph i sm of order 6. 

CLAIM 3: {2, 4, 8} _C S. 

This  follows f rom (i). 

CLAIM 4: S = {2, 3, 4, 8}. 

The  existence of an au tomorph i sm of order 3 follows from T h e o r e m  2(2), so 

the  claim follows from Claim 3 and (i). 

CLAIM 5: C(2) = 2, C(4) = 1, C(8) = 2. 

This  immedia te ly  follows from (i). 

CLAIM 6: c(3) = 1. 

Let  a E Aut(F2)  have order 3. By Theorem 2 (2) we have G -- F2 >4 (a)  

= (cl)L[(c~)  -- C3 L[c3 .  So F is the unique normal  subgroup  of index 3 in G 

which is a free pro-3 group. By Theorem A in [H-R1] one finds f E F2 with 

a f E {cl, c2}. Therefore  a is conjugate  in Aut(F2)  to the a u t o m o r p h i s m  induced 

by conjugat ion  with  ei ther  Cl or c2. W.l.o.g. we assume a = Cl. P u t  x :-- c2a -1, 
y :-- a - l c 2 ,  then  x ~ = y and y~ -- x - l y  -1 and there  is only one such a up  to 

conjugacy in Aut(F2) .  

T h e  proof  of (iv) follows from Theo rem 5.8 in [Lu] and L e m m a  2.5(iii) in 

[H-R-Z]. . 
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